
OmniVista 3.5 Web Interface Help

Getting Started with the Web Client
The OmniVista Web Client for OmniVista provides users access to basic versions of the
OmniVista Locator, Notifications, and Topology applications through a web application residing
on the OmniVista Server. The following functionality is available:

• Locator - Search for an end station by either IP or MAC address and browse to locate an
end station

• Notifications - View traps sent to OmniVista by the switches
• Topology - View information for all switches managed by OmniVista.

Note: OmniVista provides a Web Services API that customers can use to write their own
web applications. Go to “Web Services API” on page 14 to view Web Services API
document.

Requirements
The Web Client is installed on the OmniVista Server and can be accessed through the following
web browsers:

• Windows - Internet Explorer Versions 6.0 and 7.0
• Linux - Firefox Versions 1.5, 2.0, and 3.0.
• Sun Solaris - Firefox Versions 1.5 and 2.0.

Your browser preferences (or options) should be set up as follows:

• Cookies should be enabled. Typically, this is the default.
• JavaScript must be enabled/supported.
• Java must be enabled.
• Style sheets must be enabled; that is, the colors, fonts, backgrounds, etc., of web pages

should always be used (rather than user-configured settings).
• Checking for new versions of pages should be set to "Every time" your browser opens.

Note: Typically, many of these settings are configured as the default. Different browsers
(and different versions of the same browser) may have different dialogs for these settings.
Check your browser help pages if you need help.

Logging Into OmniVista Web Client
To access the OmniVista Web Client:

1. Open an Internet browser and enter http://OmniVista Server IP Address:8080 in the address
line, then press ENTER. The Login Screen will appear.

Note: If the client and server are installed on the same machine, you can enter
http://localhost:8080.

1

OmniVista 3.5 Web Interface Help

2. Enter the OmniVista user name and password and click Login. The following screen will
appear.

2

OmniVista 3.5 Web Interface Help

The Web Client Topology screen provides a listing and description of all discovered switches.
From here, you can perform OmniVista Topology functions. You can also click on the End
Station Search or End Station Browse tabs to access Locator functions; or click on the Traps tab
to access Notifications Functions.

Locator
The OmniVista Locator application within the OmniVista Web Client is a search tool that
enables you to search for end stations connected to switches in the network. The End Station
Search tab enables you to locate a switch and that is directly connected to a user-specified end
station. The End Station Browse tab enables you search in the "opposite direction". Instead of
entering an end station's address to locate the switch and slot/port to which the end station is
connected, you can search for and list ALL end stations connected to user-specified switch ports.
The end stations are located by searching the historical database.

The search results display a list of devices in a table that provides basic information for each
device. You can customize the table display, sort the information in the table by column, and
create filters to view specific information. You can also export the information to a .CSV file.

End Station Search Tab
The End Station Search tab enables you to locate a switch and that is directly connected to a
user-specified end station. You can enter the end station's IP address or MAC address to locate
the switch and slot/port to which the end station is connected.

Although you can enter an end station's IP address or MAC address to locate the switch and
slot/port that is directly connected to the end station, Locator actually searches for the end
station's MAC address. If you enter an IP address, the first thing Locator does is find the

3

OmniVista 3.5 Web Interface Help

corresponding MAC address. This MAC address is displayed in the OmniVista Web Service
Locator table with a time stamp indicating when the information was obtained (last time the
device was polled).

Searching for a Specific End Station
To search for a specific switch:

1. In the Address Type field, select IP to search by IP address or MAC to search by MAC
address.

2. In the Address field, enter the IP or MAC address. If searching by MAC address, you must
enter the address in 000000:000000 format.

3. Click the Set Address button.

The results will appear in the OmniVista Web Service Locator table. By default, the table is
initially sorted in ascending order by IP address. You can sort the data by column heading
(ascending/descending) or apply filters to the table to display specific information. You can also
export the information to a .CSV file.

End Station Browse Tab
The End Station Browse tab enables you search in the "opposite direction" of the End Station
Search tab. Instead of entering an end station's address to locate the switch and slot/port to which
the end station is connected, you can search for and list ALL end stations connected to user-
specified switch ports.

4

OmniVista 3.5 Web Interface Help

To browse for end stations select the switch(es) in which you are interested, then click the Next
button. To select multiple switches, use the Shift or Ctrl keys. The results will appear in the
OmniVista Web Service Locator Browse table. By default, the table is initially sorted in
ascending order by IP address. You can sort the data by column heading (ascending/descending)
or apply filters to the table to display specific information. You can also export the information
to a .CSV file.

Table Display
You can set the number of rows that you want displayed on each page by entering the number of
rows you want to display (e.g., 12), then clicking the Set Rows button. If a table spans several
pages, click Next or a specific page number at the top left corner of the table to page through the
table.

Note: A maximum row setting of 100 is advised. Larger row settings can increase the time
it takes to populate the table.

You can also configure the columns you want to display. Click on Visible Columns and select
all of the columns you want to display. De-select any columns you want to hide. The new
settings will remain in effect until you log out of the session. By default, all columns are
displayed.

Column Definitions
Searched IP Address: The IP address of the end station connected to the selected device.

Searched MAC Address: The MAC address of the end station connected to the selected device.

Searched DNS Name: The DNS name of the end station connected to the selected device.

5

OmniVista 3.5 Web Interface Help

Device IP Address: The IP address of the device connected to the end station.

Device DNS: The DNS of the device connected to the end station.

Device Name: The name of the device connected to the end station.

Slot/Port: The slot/port of the device connected to the end station.

Port Speed: The port speed of the device connected to the end station.

Port Status: The port status of the device connected to the end station.

Duplex Mode: The duplex mode (half duplex, full duplex, or auto duplex) of the selected device
connected to the end station.

VLAN ID: The VLAN ID associated with the device connected to the end station.

Timestamp: The time the information was gathered.

Sorting Information
You can sort the Locator Browse Table in ascending or descending order by clicking on a
column heading.

Filtering Information
You can filter the information in the table to display specific switch information.

1. Select a column heading from the first Filter drop-down menu (e.g., Device IP Address,
Device DNS).

2. Select an operator from the second Filter drop-down menu (e.g., Equals, Starts With).

3. Enter a value in the last Filter field (e.g., "9600").

For example, to view a list of devices in the Test Network, you would select "Device DNS",
"Contains", and enter "testnet" in the last field).

4. When you have entered all of the filter criteria, click the Filter button. The results will be
displayed in the Locator Table. To refine the filter, enter a new set of filtering criteria and click
the Refine Filter button to display a list of devices matching both sets of filters.

Note: You can display the results of previous filters by clicking the browser's Back button.
The OmniVista Web Client will display up to eight (8) previous results in a single login
session.

To start over click the New Query button.

Exporting Information
To export the table to a .CSV file, use the browse function to locate the devices and populate the
Locator Browse Table, filter the information (if applicable), then click the Export button. Click
Yes at the Security prompt, then select the directory in which you want to save the file.

6

OmniVista 3.5 Web Interface Help

Notifications
The Notifications application within the OmniVista Web Client is used to monitor switch
activity through the OmniVista Web Traps Table. The table, available under the Traps tab,
displays information on all alarms and traps received by the OmniVista Server. You can
customize the table display, sort the information in the table by column, and create filters to view
specific information. You can also export the information to a .CSV file.

Note: If the table is not displaying any notifications, it may be that none of your
discovered switches have been configured to send traps to the OmniVista server.

Table Display
You can set the number of rows that you want displayed on each page by entering the number of
rows you want to display (e.g., 12), then clicking the Set Rows button. If a table spans several
pages, click Next or a specific page number at the top left corner of the table to page through the
table.

You can also configure the columns you want to display. Click on Visible Columns and select
all of the columns you want to display. De-select any columns you want to hide. The new
settings will remain in effect until you log out of the session. By default, all columns are
displayed.

By default, up to 1,000 traps are displayed. However, you can configure the display by entering a
number in the Traps Limit field, and clicking the Set The Max Number of Traps button.
When the configured maximum number is reached, the newest traps overwrite the oldest traps.

The refresh function is disabled by default. To enable it, enter a value (in seconds) in the
Refresh Interval field, and click the Start Refresh button (the refresh function will be enabled

7

OmniVista 3.5 Web Interface Help

and the Start Refresh button will change to Stop Refresh). To disable the refresh function, click
the Stop Refresh button. The default refresh interval is 30 seconds (this is also the minimum
refresh interval).

Column Definitions
Name: The name of the trap as defined in the MIB.

Synopsis: A brief description of the trap.

Agent: The IP address of the switch that generated the trap.

Agent Name: The name of the switch that generated the trap.

Date/Time: The date and time the trap was received by the OmniVista server, using the
OmniVista server's system clock.

Severity: The severity level assigned to the trap in the Notifications Application's Trap
Definitions Window:

• Normal
• Warning
• Minor
• Major
• Critical.

Acknowledged: Indicates whether or not the trap has been acknowledged. "true indicates an
acknowledged trap. "false" indicates that the trap that has yet been acknowledged, or the
acknowledgement has been renounced.

Sorting Information
You can sort the OmniVista Web Traps Table in ascending or descending order by clicking on
a column heading.

Filtering Information
You can filter the information in the table to display specific switch information.

1. Select a column heading from the first Filter drop-down menu (e.g., Name, Severity).

2. Select an operator from the second Filter drop-down menu (e.g., Equals, Starts With).

3. Enter a value in the last Filter field (e.g., "OS9600").

For example, to view a list of all traps with a Severity Level of "Major", you would select
"Severity" in the first field, "Equals" in the second, then enter "Major" in the last field).

4. When you have entered all of the filter criteria, click the Filter button. The results will be
displayed in the OmniVista Web Traps Table. To further refine the filter, enter a new set of
filtering criteria and click the Refine Filter button to display a list of devices matching both sets
of filters.

Note: You can display the results of previous filters by clicking the browser's Back button.
The OmniVista Web Client will display up to eight (8) previous results in a single login
session.

8

OmniVista 3.5 Web Interface Help

To start over and create a new filter, click the New Query button and repeat Steps 1 - 4.

Exporting Information
To export the table to a .CSV file, filter the information (if applicable), the click the Export
button. Click Yes at the Security prompt, then select the directory in which you want to save the
file.

Topology
The Topology application within the OmniVista Web Client is used to access the OmniVista
"List of All Discovered Devices". The table, available under the Topology tab, provides basic
information for all physical devices in the network, including all devices discovered by
OmniVista, as well as any devices that were added manually. You can customize the table
display, sort the information in the table by column, create filters to view specific information
and export the information to a .CSV file. You can also access web-based management tools
(e.g., WebView) for individual AOS switches listed in the Topology Table.

Table Display
You can set the number of rows that you want displayed on each page by entering the number of
rows you want to display (e.g., 12), then clicking the Set Rows button. If a table spans several
pages, click Next or a specific page number at the top left corner of the table to page through the
table.

9

OmniVista 3.5 Web Interface Help

Note: A maximum row setting of 100 is advised. Larger row settings can increase the time
it takes to populate the table.

You can also configure the columns you want to display. Click on Visible Columns and select
all of the columns you want to display. De-select any columns you want to hide. The new
settings will remain in effect until you log out of the session. By default, all columns are
displayed.

The refresh function is disabled by default. To enable it, enter a value (in seconds) in the
Refresh Interval field, and click the Start Refresh button (the refresh function will be enabled
and the Start Refresh button will change to Stop Refresh). To disable the refresh function, click
the Stop Refresh button. The default refresh interval is 30 seconds (this is also the minimum
refresh interval).

Column Definitions
Address: The IP address of the device.

DNS Name: The name of the device, if applicable.

Version: The version number of the device firmware. Version numbers are not displayed for
certain non-XOS devices.

Type: The type of the device chassis.

Last Upgrade Status: The status of the last firmware upgrade on the switch:

• "Successful" - Successful BMF and Image upgrade performed.
• "Successful (BMF)" - Successful BMF upgrade performed.
• "Successful (Image)" - Successful Image upgrade is performed.
• "Failed (BMF, Image)" - BMF and Image upgrade failed.
• "Failed (BMF)" - BMF upgrade failed.
• "Failed (Image)" - Image upgrade failed.

In all "Failed" cases, "Reload From Working" will be disabled on the switch until a successful
upgrade is performed.

Backup Date: The date that the device's configuration and/or image files were last backed-up to
the OmniVista server.

Backup Version: The firmware version of the configuration and/or image files that were last
backed-up to the OmniVista server.

Last Known Up At: The date and time when the last poll was initiated on the device.

Description: A description of the device, usually the vendor name and model.

Status: This field displays the operational status of the device.

• Up - Device is up and responding to polls.
• Down - Device is down and not responding to polls.
• Warning - Device has sent at least one warning or critical trap and is thus in the warning

state.

10

OmniVista 3.5 Web Interface Help

Traps: This field indicates the status of trap configuration for the device.

• On - Traps are enabled.
• Off - Traps are disabled.
• Not Configurable - Traps for this device are not configurable from OmniVista. (Note

that traps may have been configured for such devices outside of OmniVista.)
• Unknown - OmniVista does not know the status of trap configuration on this switch.

OmniVista will read the switch's trap configuration when traps are configured for the
switch via the Configure Traps Wizard.

Seen By: This field lists the Security Groups that are allowed to view the device. (The Security
Groups that are allowed to view a device can be defined when devices are auto-discovered,
added manually, or edited.) The default Security Groups shipped with OmniVista are as follows:

• Default Group - This group has read-only access to switches in the list of All
Discovered Devices that are configured to grant access to this group.

• Writers Group - This group has both read and write access to switches in the list of All
Discovered Devices that are configured to grant access to this group. However, members
of this group cannot run auto-discovery nor can they manually add, delete, or modify
entries in the list of All Discovered Devices.

• Network Administrators Group - This group has full administrative access rights to all
switches on the network. Members of this group can run autodiscovery and can manually
add, delete, and modify entries in the list of All Discovered Devices. Members of this
group also have full read and right access to entries in the Audit application and the
Control Panel application. Members of this group can do everything EXCEPT make
changes to Security Groups.

• Administrators Group - This group has all administrative access rights granted to the
Network Administrators group AND full administrative rights to make changes to
Security Groups.

Note that other Security Group names may display in this field if custom Security Groups were
created. Refer to help for the Security application Users and Groups for further information on
Security Groups.

Running From: For AOS devices, this field indicates whether the switch is running from the
certified directory or from the working directory. This field is blank for all other devices. For
AOS devices, the directory structure that stores the switch's image and configuration files in
flash memory is divided into two parts:

• The Certified Directory contains files that have been certified by an authorized user as the
default configuration files for the switch. When the switch reboots, it will automatically
load its configuration files from the certified directory if the switch detects a difference
between the certified directory and the working directory. (Note that you can specifically
command a switch to reboot from either directory).

• The Working Directory contains files that may or may not have been altered from those
in the certified directory. The working directory is a holding place for new files to be
tested before committing the files to the certified directory. You can save configuration

11

OmniVista 3.5 Web Interface Help

changes to the working directory. You cannot save configuration changes directly to the
certified directory.

Note that the files in the certified directory and in the working directory may be different from
the running configuration of the switch, which is contained in RAM. The running configuration
is the current operating parameters of the switch, which are originally loaded from the certified
or working directory but may have been modified through CLI commands, WebView
commands, or OmniVista. Modifications made to the running configuration must be saved to the
working directory (or lost). The working directory can then be copied to the certified directory if
and when desired.

Changes: For AOS devices, this field indicates the state of changes made to the switch's
configuration. This field is blank for all other devices. This field can display the following
values:

• Unsaved. Changes have been made to the running configuration of the switch that have
not been saved to the working directory.

• Uncertified. Changes have been saved to the working directory, but the working directory
hasn't been copied to the certified directory. The working directory and the certified
directory are thus different.

• Blank. When this field is blank for an AOS device, the implication is that OmniVista
knows of no unsaved configuration changes and assumes that the working and certified
directories in flash memory are identical.

OmniVista is now capable of tracking AOS configuration changes made through CLI commands
or WebView, and so will reflect configuration changes made outside of OmniVista through these
two interfaces in the Changes field. Information in the Changes field will be accurate as long as
OmniVista has polled the switch since the last change was made (through any interface).

Note that it is possible a switch could be in a state where it is both Unsaved and Uncertified. In
this situation Unsaved displays in the Changes field. Whenever an AOS device is in the Unsaved
or Uncertified state, a blue exclamation mark displays on its icon ().

Sorting Information
You can sort the Discovered Devices Table in ascending or descending order by clicking on a
column heading.

Filtering Information
You can filter the information in the table to display specific switch information.

1. Select a column heading from the first Filter drop-down menu (e.g., Address, DNS Name).

2. Select an operator from the second Filter drop-down menu (e.g., Equals, Starts With).

3. Enter a value in the last Filter field (e.g., "9600").

For example, to view a list of 9600 devices, you would select "Type", "Equals", and enter "9600"
in the last field).

12

OmniVista 3.5 Web Interface Help

4. When you have entered all of the filter criteria, click the Filter button. The results will be
displayed in the OmniVista Web Topology Table. To further refine the filter, enter a new set of
filtering criteria and click the Refine Filter button to display a list of devices matching both sets
of filters.

Note: You can display the results of previous filters by clicking the browser's Back button.
The OmniVista Web Client will display up to eight (8) previous results in a single login
session.

To start over and create a new filter, click the New Query button and repeat Steps 1 - 4.

Exporting Information
To export the table to a .CSV file, filter the information (if applicable), the click the Export
button. Click Yes at the Security prompt, then select the directory in which you want to save the
file.

Web-Based Management
You can also access web-based management tools (e.g., WebView) for individual AOS switches
listed in the Topology Table by clicking on the switch's IP address in the Topology Table. If a
switch has web-based management capabilities, the login screen for the switch will appear. A
WebView Login Screen is shown below.

13

OmniVista 3.5 Web Interface Help

Web Services API
Software Interfaces
OmniVista provides a Web Services API that customers can use to write their own web
applications. The service is available both by HTTP and by secure HTTPS, and uses the port(s)
that the customer specified at installation for the web server that runs the OmniVista web client.
At installation, OmniVista also gives the user the option of whether or not to allow HTTP (as
opposed to HTTPS) connections to the web service; however, this setting can be modified after
installation.

The web service delegates much of the work to a private OmniVista Server back end, over on
non-public API, which listens on a port configured by the customer at installation.

The Web Service Design Language (WSDL) description of OmniVista’s API is available to the
user at “/axis/services/OVWeb1?wsdl” on the included Tomcat web server, e.g.
“http://localhost:8080/axis/services/OVWeb1?wsdl “.

The Web Service API is described in a more human-readable form than WSDL in the following
sections, using a Java-like syntax. Despite the use of the Java-like syntax in what follows, the
actual web service is platform-independent, callable from a variety of web-development
languages (e.g., Java, PHP, perl). The following sections describe the operations that can be
performed, followed by the data types used and returned by those operations.

Common Behaviors

Web Service

• Any of the function calls listed below, which attempt to delegate work to the private back
end server, return a Fault if they are unable to contact the private back end.

• The web service requires that the first call of a session be the login call, which defines a
login session.

• The web service requires that all non-login calls to the web service identify the login
session that they belong to by including a session cookie (see login).

• Callers to the web service are only allowed to read or modify the data belonging to the
specified login session.

• The web service supports up to 6 active login sessions (logged-in web sessions which
have not yet logged out nor expired due to inactivity).

• Login sessions expire after 30 minutes of inactivity, where activity is defined as making
any function call within that login session.

• The web service displays at least as many results (e.g., number of Locator Net Forward
results) as are supported by the traditional OmniVista “heavy” client.

• The getXxx() calls silently limit the number of returned rows to 10,000. Note that this
does not limit the number of rows returned by the queryXxx() calls; it is simply a “page
size” that limits the number of results returned at once.

14

OmniVista 3.5 Web Interface Help

ResultSets
Many OmniVista Web Service functions return some flavor of ResultSet. Each ResultSet
includes a uniqueId, which is passed in subsequent function calls to operate on that ResultSet.

The web service supports the creation and simultaneous existence of a minimum of 8 ResultSets
of each type (e.g., 8 TrapResultSets, 8 SwitchResultSets, etc) within each login session. When
the number of ResultSets of a given type exceeds the, OmniVista may automatically dispose of
the least-recently used ResultSet of that type, where a “use” is defined as “passing the uniqueId
of a ResultSet to a function that supports that ResultSet ID type as an input.”

Any function that accepts a ResultSet as an input, other than the disposeXxxResults() functions,
returns a Fault if no such ResultSet of the specified type exists.

Function: login
void login(
 Base64 userName,
 Base64 password
) throws Fault

When this function is called, OmniVista shall attempt to create a login session for the given
OmniVista user, using the given OmniVista password.

If the userName/password combination is incorrect, the function shall return a Fault.

If the maximum number of active login sessions has been reached, the function shall return a
Fault.

If the login succeeds, the response headers shall include a set-cookie header identifying the login
session ID, similar to the following example:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=65761E9ABEC4B23F0E66BA3AC3ED14D9; Path=/axis
Content-Type: text/xml;charset=iso-8859-1
Transfer-Encoding: chunked
Date: Tue, 26 Sep 2006 18:06:56 GMT

All subsequent calls that intend to execute within the newly-created login session must include
this cookie in the request headers, similar to the following example:

POST /axis/services/OVWeb1 HTTP/1.1
Host: localhost:8080
User-Agent: NuSOAP/0.7.2 (1.94)
Connection: Keep-Alive
Content-Type: text/xml; charset=ISO-8859-1
SOAPAction: ""
Content-Length: 554
Cookie: JSESSIONID=65761E9ABEC4B23F0E66BA3AC3ED14D9;

The above cookie handling is done automatically, or nearly automatically, by many web service
libraries, such as Java’s AXIS, or PHP’s NuSOAP.

OmniVista shall consider any call whose Cookie request header correctly identifies an existing
login session to be part of that login session.

15

OmniVista 3.5 Web Interface Help

Function: logout
void logout() throws Fault

When this function is called, OmniVista shall dispose of the current login session, defined as the
login session identified by the cookie request header (for a description of cookie handling, see
login() above).

On disposal of the login session, OmniVista shall also dispose of any cached query results that
belong to that login session.

Function: querySwitches
SwitchResultSet querySwitches(
 FilterObj [] filters,
 SortObj [] sorters,
 long maxResults
) throws Fault

When this function is called, OmniVista shall return a filtered and sorted SwitchResultSet of up
to maxResults switches.

If more than maxResults switches are available, OmniVista shall return the first maxResults
switches which pass the given filters, if any.

If sorters is null, or the array of sorters is empty, the returned results shall be in ascending order
of switch IP address.

The returned SwitchResultSet can be passed to getSwitchData() or to any of the other functions
below which accept a SwitchResultSet.uniqueId – for example, to retrieve some of the data from
the result set, or to resort the results, or to further filter the results.

Function: getSwitchData
SwitchData [] getSwitchData(
 String switchResultSet.uniqueId,
 long offset,
 long count
) throws Fault

When this function is called, OmniVista shall return an array of up to count SwitchData objects
from the SwitchResultSet identified by switchResultSet.uniqueId, starting at the given zero-
based row offset.

If no data is available in the SwitchResultSet starting at offset, then OmniVista shall return an
empty array of SwitchData.

Function: sortSwitchResults
SwitchResultSet sortSwitchResults(
 String switchResultSet.uniqueId,
 SortObj [] sorters
)throws Fault

When this function is called, OmniVista shall return a new SwitchResultSet with the identical
contents as the input switchResultSet, but sorted in the order specified by sorters.

If sorters is null, or the array of sorters is empty, the returned results shall be in the same order as
the input switchResultSet.

16

OmniVista 3.5 Web Interface Help

The input switchResultSet shall remain unchanged.

Function: refineSwitchResults
SwitchResultSet refineSwitchResults(
 String switchResultSet.uniqueId,
 FilterObj [] moreFilters
) throws Fault

When this function is called, OmniVista shall return a SwitchResultSet with the identical
contents as the input switchResultSet, but further filtered by the filters specified by moreFilters.

The input switchResultSet shall remain unchanged.

Function: disposeSwitchResults
void disposeSwitchResults(
 String switchResultSet.uniqueId
) throws Fault

When this function is called, OmniVista shall dispose of the SwitchResultSet specified by the
given uniqueId.

The function shall return normally even if no such SwitchResultSet exists (since that
SwitchResultSet might have been automatically expired).

Function: queryTraps
TrapResultSet queryTraps(
 FilterObj [] filters,
 SortObj [] sorters,
 long maxResults
) throws Fault

When this function is called, OmniVista shall return a filtered and sorted TrapResultSet of up to
maxResults traps.

The traps returned shall be from OmniVista’s “post-absorption” stream (which is the same
stream that is displayed on the traditional OmniVista “heavy” client).

If more than maxResults traps are available, OmniVista shall return the maxResults most recent
traps which pass the given filters, if any.

If sorters is null, or the array of sorters is empty, the returned results shall be in descending order
of the trap date/time (newest-first).

The returned TrapResultSet can be passed to getTrapData() or to any of the other functions
below which accept a TrapResultSet.uniqueId – for example, to retrieve some of the data from
the result set, or to resort the results, or to further filter the results.

Function: getTrapData
TrapData [] getTrapData(
 String trapResultSet.uniqueId,
 long offset,
 long count
) throws Fault

17

OmniVista 3.5 Web Interface Help

When this function is called, OmniVista shall return an array of up to count TrapData objects
from the TrapResultSet identified by trapResultSet.uniqueId, starting at the given zero-based row
offset.

If no data is available in the TrapResultSet starting at offset, then OmniVista shall return an
empty array of TrapData.

Function: sortTrapResults
TrapResultSet sortTrapResults(
 String trapResultSet.uniqueId,
 SortObj [] sorters
)throws Fault

When this function is called, OmniVista shall return a new TrapResultSet with the identical
contents as the input trapResultSet, but sorted in the order specified by sorters.

If sorters is null, or the array of sorters is empty, the returned results shall be in the same order as
the input trapResultSet.

The input trapResultSet shall remain unchanged.

Function: refineTrapResults
TrapResultSet refineTrapResults(
 String trapResultSet.uniqueId,
 FilterObj [] moreFilters
) throws Fault

When this function is called, OmniVista shall return a TrapResultSet with the identical contents
as the input trapResultSet, but further filtered by the filters specified by moreFilters.

The input trapResultSet shall remain unchanged.

Function: disposeTrapResults
void disposeTrapResults(
 String trapResultSet.uniqueId
) throws Fault

When this function is called, OmniVista shall dispose of the TrapResultSet specified by the
given uniqueId.

The function shall return normally even if no such TrapResultSet exists (since that TrapResultSet
might have been automatically expired).

Function: queryLocatorBrowse
LocatorResultSet queryLocatorBrowse(
 String [] switchList,
 FilterObj [] netFwdFilters,
 SortObj [] netFwdSorters,
 long maxNetFwdResults
) throws Fault

When this function is called, OmniVista shall return a filtered and sorted LocatorResultSet of up
to maxNetFwdResults NetForwardData rows.

If switchList is non-null and non-empty, switchList shall be validated to be valid DNS or
numeric IP addresses.

18

OmniVista 3.5 Web Interface Help

If switchList is non-null and non-empty, OmniVista shall limit the returned results to only those
records that match one of the given switchIp addresses.

If more than maxNetFwdResults NetForwardData rows are available, OmniVista shall return the
first maxNetFwdResults results which pass the given filters, if any.

If netFwdSorters is null, or the array of netFwdSorters is empty, the returned results shall be in
ascending order of switch IP address.

The returned LocatorResultSet can be passed to getNetFwdData() or to any of the other functions
below which accept a LocatorResultSet.uniqueId – for example, to retrieve some of the data
from the result set, or to resort the results, or to further filter the results.

When executing this command, OmniVista shall use the currently-available Reverse DNS
information, as opposed to the behavior on the traditional OmniVista heavy client, which begins
with the currently-available Reverse DNS information and then trickles in updates. A future
version may add support for trickle-back Reverse DNS updates).

Function: queryLocatorSearchByMac
LocatorResultSet queryLocatorSearchByMac(
 String macAddress,
 FilterObj [] arpFilters,
 SortObj [] arpSorters,
 long maxArpResults,
 FilterObj [] netFwdFilters,
 SortObj [] netFwdSorters,
 long maxNetFwdResults
) throws Fault

When this function is called, OmniVista shall return search the OmniVista Locator database for
records pertinent to the input macAddress, and return a filtered and sorted LocatorResultSet of
up to maxArpResults ArpData rows and maxNetFwdResults NetForwardData rows.

OmniVista shall validate that macAddress is a well-formed MAC address, and throw a Fault if it
is not.

If more than the requested number of rows are available, OmniVista shall return the first results
which pass the given filters, if any.

If arpSorters is null, or the array of arpSorters is empty, the returned ArpData rows shall be in
ascending order of IP address.

If netFwdSorters is null, or the array of netFwdSorters is empty, the returned results shall be in
ascending order of switch IP address.

The returned LocatorResultSet can be passed to getArpData(), getNetFwdData() or to any of the
other functions below which accept a LocatorResultSet.uniqueId – for example, to retrieve some
of the data from the result set, or to resort the results, or to further filter the results.

When executing this command, OmniVista shall use the currently-available Reverse DNS
information, as opposed to the behavior on the traditional OmniVista heavy client, which begins
with the currently-available Reverse DNS information and then trickles in updates. A future
version may add support for trickle-back Reverse DNS updates).

19

OmniVista 3.5 Web Interface Help

Function: queryLocatorSearchByIp
LocatorResultSet queryLocatorSearchByIp(
 String ipAddress,
 FilterObj [] arpFilters,
 SortObj [] arpSorters,
 long maxArpResults,
 FilterObj [] netFwdFilters,
 SortObj [] netFwdSorters,
 long maxNetFwdResults
) throws Fault

When this function is called, OmniVista shall return search the OmniVista Locator database for
records pertinent to the input ipAddress, and return a filtered and sorted LocatorResultSet of up
to maxArpResults ArpData rows and maxNetFwdResults NetForwardData rows.

OmniVista shall validate that ipAddress is a well-formed DNS or numeric IP address, and throw
a Fault if it is not.

If ipAddress is the address of a switch, rather than that of an end-station, the web service shall
nonetheless return whatever data is available in the Locator database (as opposed to the
traditional OmniVista “heavy” client, which pops up a message saying that this is the address of
a switch).

If more than the requested number of rows are available, OmniVista shall return the first results
which pass the given filters, if any.

If arpSorters is null, or the array of arpSorters is empty, the returned ArpData rows shall be in
ascending order of IP address.

If netFwdSorters is null, or the array of netFwdSorters is empty, the returned results shall be in
ascending order of switch IP address.

The returned LocatorResultSet can be passed to getArpData(), getNetFwdData() or to any of the
other functions below which accept a LocatorResultSet.uniqueId – for example, to retrieve some
of the data from the result set, or to resort the results, or to further filter the results.

When executing this command, OmniVista shall use the currently-available Reverse DNS
information, as opposed to the behavior on the traditional OmniVista heavy client, which begins
with the currently-available Reverse DNS information and then trickles in updates. A future
version may add support for trickle-back Reverse DNS updates).

Function: getArpData
ArpData [] getArpData(
 String locatorResultSet.uniqueId,
 long offset,
 long count
) throws Fault

When this function is called, OmniVista shall return an array of up to count ArpData objects
from the LocatorResultSet identified by locatorResultSet.uniqueId, starting at the given zero-
based row offseta.

If no data is available in the LocatorResultSet starting at offset, then OmniVista shall return an
empty array of ArpData.

20

OmniVista 3.5 Web Interface Help

Function: getNetFwdData
NetForwardData [] getNetFwdData(
 String locatorResultSet.uniqueId,
 long offset,
 long count
) throws Fault

When this function is called, OmniVista shall return an array of up to count NetForwardData
objects from the LocatorResultSet identified by locatorResultSet.uniqueId, starting at the given
zero-based row offset.

If no data is available in the LocatorResultSet starting at offset, then OmniVista shall return an
empty array of NetForwardData.

Function: sortLocatorResults
LocatorResultSet sortLocatorResults(
 String locatorResultSet.uniqueId,
 SortObj [] arpSorters,
 SortObj [] netFwdSorters,
)throws Fault

When this function is called, OmniVista shall return a new LocatorResultSet with the identical
contents as the input locatorResultSet, but sorted in the order specified by arpSorters. and
netFwdSorters.

If arpSorters or netFwdSorters is null, or an array of sorters is empty, then the associated data in
the returned results shall be in the same order as the input locatorResultSet.

The input locatorResultSet shall remain unchanged.

Function: refineLocatorResults
LocatorResultSet refineLocatorResults(
 String locatorResultSet.uniqueId,
 FilterObj [] moreArpFilters
 FilterObj [] moreNetFwdFilters
) throws Fault

When this function is called, OmniVista shall return a LocatorResultSet with the identical
contents as the input locatorResultSet, but further filtered by the filters specified by
moreArpFilters and moreNetFwdFilters.

The input locatorResultSet shall remain unchanged.

Function: disposeLocatorResults
void disposeLocatorResults(
 String locatorResultSet.uniqueId
) throws Fault

When this function is called, OmniVista shall dispose of the LocatorResultSet specified by the
given uniqueId.

The function shall return normally even if no such LocatorResultSet exists (since that
LocatorResultSet might have been automatically expired).

21

OmniVista 3.5 Web Interface Help

Data: ArpData
class ArpData
{
 // In the following, [Col] means:
 // “Same as Col in Locator Initial Lookup Table.”
 String ipAddress; // [IP Address]
 String macAddress; // [MAC Address]
 String dnsName; // [DNS Lookup]
 LongDate timeStamp; // [Time Stamp]
}

This data type represents a single row of ARP (Address Resolution Protocol) data collected from
a switch.

It contains an associated IP/MAC address pair, the date and time when that address pair was read
from a switch, and the reverse DNS name known by OmniVista for that IP address at that
date/time.

Since OmniVista collects most reverse DNS data lazily, the dnsName is not guaranteed to be up-
to-date as of date/time timeStamp.

When sorting or filtering ArpData, OmniVista shall accept a FilterObj.keyName which specifies
any field of ArpData, such as ArpData.ipAddress, ArpData.macAddress, etc.

ArpData is returned by queryLocatorSearchByMac() and queryLocatorSearchByIp()

Data: Base64
Base-64 encoded data is a standard type used in web services to represent data which may
contain characters that are meaningful to XML, such as “<”, “>”, etc.

The OmniVista web service shall* use Base64 when the data being transmitted may contain such
characters.

*NOTE that we may change from Base64-encoding for some fields, such as login/password, to
URL-encoding, if this is much more convenient for the user.

Data: FilterObj
class FilterObj
{
 // If true, we want objects that match, else we want those that
don’t.
 boolean wantMatch;

 // An integer representing one of the following operators:
 // ==, !=, <, <=, >, >=, startsWith, endsWith, contains.
 int operator;
 // Identifies the datum that we’re filtering on, e.g.
“TrapData.name”
 String keyName;
 // The value that we’re comparing against.
 Base64 value;
}

22

OmniVista 3.5 Web Interface Help

OmniVista shall allow keyNames which are appropriate to the data being filtered, e.g. when
filtering TrapData, use keyNames that begin with “TrapData”.

When filtering, if operator does not contain a meaningful value, a Fault shall be returned.

When filtering, if a keyName is inappropriate to the data being filtered, a Fault shall be returned.

An array of FilterObj objects shall be considered to specify an AND of those filters.

If a function such as queryTraps() is passed a null or empty array of FilterObj objects, the
returned results shall be unfiltered.

When filtering on any dotted numeric IP address value (i.e. a value which the web service returns
as a dotted numeric IP address), OmniVista shall expect a value that is a String containing a
dotted numeric IP address, rather than a DNS name.

Data: LocatorResultSet
class LocatorResultSet extends ResultSet
{
 long numArpResults;
 FilterObj [] arpFilters;
 SortObj [] arpSorters;
 long numNetFwdResults;
 FilterObj [] netFwdFilters;
 SortObj [] netFwdSorters;
}

This data type represents the results of a Locator query.

The functions that expect a LocatorResultSet.uniqueId shall return a Fault if passed the uniqueId
of another kind of ResultSet.

The numArpResults field contains the number of rows of ArpData that were returned by the
query.

The arpFilters and arpSorters fields identify the arpFilters and arpSorters, if any, that were used
to create the LocatorResultSet.

The xxxNetFwdXxx fields are similar, but apply to any NetForwardData returned by the query.

Data: LongDate
class LongDate
{
 long msSinceEpochGMT;
}

This data type represents a date/time. LongDate are a documentation convention here; they will
actually be coded in the WSDL identically to the long data type.

They always contain a date/time, expressed as the (positive or negative) number of milliseconds
since midnight, January 1, 1970, Greenwich Mean Time, which is the same convention as
java.util.Date, and is easily converted to other computer date/time standards.

23

OmniVista 3.5 Web Interface Help

Data: NetForwardData
class NetForwardData
{
 // In the following, [Col] means:
 // “Same as Col in Locator Search Results Table.”
 String endstationIpAddress; // [Searched IP Address]
 String endstationMacAddress; // [Searched MAC Address]
 String endstationDnsName; // [Searched DNS Name]
 String switchIpAddress; // [Device IP Address]
 String switchDnsName; // [Device DNS]
 Base64 switchSysName; // [Device Name]
 int slot; // “Slot” of [Slot/Port]
 int port; // “Port” or [Slot/Port]
 int ifIndex; // SNMP ifIndex assoc. with
Slot/Port.
 String portStatus; // [Port Status]
 int portSpeed; // [Port Speed]
 String portDuplexMode; // [Duplex Mode]
 int vlanId; // [VLAN ID]
 LongDate timeStamp; // [Timestamp]
}

This data type represents a single row in the Locator NetForward table.

When sorting or filtering NetForwardData, OmniVista shall accept a FilterObj.keyName which
specifies any field of NetForwardData, such as "NetForwardData.switchIpAddress",
"NetForwardData.slot", etc.

NetForwardData is returned by queryLocatorBrowse(), queryLocatorSearchByMac(), and
queryLocatorSearchByIp().

As a convenience, operations on NetForwardData accepts the comparison/sort key
"NetForwardData.slotPort". When included in a sort request, "NetForwardData.slotPort".shall
select "NetForwardData.slot" as the major key, and "NetForwardData.port" as the minor key.
When included in a filter request, "NetForwardData.slotPort" shall return results consistent with
an operation on the concatenation of slot, "/", port.

Data: ResultSet
class ResultSet
{
 String uniqueId;
}

This data type represents the results of a query.

The uniqueId field identifies this ResultSet, and can be passed to functions to operate on the
ResultSet..

Data: SnmpVar
class SnmpVar
 {
 String name; // The name of an SNMP variable, e.g. in a
trap.

24

OmniVista 3.5 Web Interface Help

 Base64 value; // The value of that variable.
}

This data type represents an SNMP Variable, such as those which are optionally included in
TrapData [which see].

Data: SortObj
class SortObj
{
 // Identifies the datum that we’re sorting on, e.g.
“TrapData.name”
 String keyName;
 // If true, we want a low-to-high sort order, else high-to-low.
 boolean ascending;
}

OmniVista shall allow keyNames which are appropriate to the data being sorted, e.g. when
sorting TrapData, use keyNames that begin with “TrapData”.

When sorting, if a keyName is inappropriate to the data being sorted, a Fault shall be returned.

An array of SortObj objects shall be considered to specify a sort order, major key first.

Data: Switch Data
class SwitchData
{
 String [] ipAddresses; // All switch’s IP addresses.
 String sysObjectId; // SNMP
sysObjectID
// In the following, [Col] means, “Same as column Col in Switches
table.”
 Base64 sysName; // [Name] SNMP sysName
 String ipAddress; // [Address] "main" IP
address
 String dnsName; // [DNS Name] Reverse DNS
name
 Base64 type; // [Type] e.g. "Omni-5WX"
 Base64 version; // [Version] e.g.
"5.1.6.32.R03"
 String lastUpgradeStatus; // [Last Upgrade Status]
 LongDate backupDate; // [Backup Date]
 Base64 backupVersion; // [Backup Version]
 LongDate lastKnownUp; // [Last Known Up At]
 Base64 description; // [Description] SNMP sysDescr
 String upDownStatus; // [Status] "Down", "Warning",
"Up"
 String trapsConfigured; // [Traps] Configured to receive
traps?
 String [] seenByGroups; // [Seen By] null if all can
see.
 String runningFrom; // [Running From] AOS boot
directory.
 String changesSaved; // [Changes] AOS
saved/certified.

25

OmniVista 3.5 Web Interface Help

 LongDate discovered; // [Discovered] Date of first
contact
}

This data type represents a switch.

When sorting or filtering SwitchData, OmniVista shall accept a FilterObj.keyName which
specifies any field of SwitchData, such as SwitchData.ipAddress.

When filtering SwitchData, if the name of an array field such as "SwitchData.ipAddresses" is
passed in FilterObj.keyName, the filter shall be considered to mach if any of the elements of the
array match.

When sorting SwitchData, if the name of an array field such as "SwitchData.seenByGroups" is
passed in FilterObj.keyName, the SwitchData shall be sorted using each element of the array,
starting from the first element.

Data: SwitchResultSet
class SwitchResultSet extends ResultSet
{
 long numResults;
 FilterObj [] filters;
 SortObj [] sorters;
}

This data type represents the results of a switch query.

The functions that expect a SwitchResultSet.uniqueId shall return a Fault if passed the uniqueId
of another kind of ResultSet.

The numResults field contains the number of rows of data that were returned by the query.

The filters and sorters fields identify the filters and sorters that were used to create the
SwitchResultSet.

Data: TrapData
class TrapData
{
 long instanceId; // Uniquely ID’s this trap
instance.
 int snmpVersion; // 1, 2, or 3
 LongDate date; // date/time that the trap
occurred.
 Base64 synopsis;
 boolean acked;
 String name;
 String severity;
 String agentIp;
 Base64 agentSysName;
 String sourceIp;
 String trapOID;
 SnmpVar [] snmpVars;
 String enterprise; // Valid for SNMP version 1 only
 String enterpriseOID; // Valid for SNMP version 1 only
 int generic; // Valid for SNMP version 1 only

26

OmniVista 3.5 Web Interface Help

27

 int specific; // Valid for SNMP version 1 only
}

This data type represents a single instance of a trap notification received by the OmniVista
Server.

When filtering TrapData, OmniVista shall accept a FilterObj.keyName which specifies a leaf
field of TrapData, such as "TrapData.synopsis", "TrapData.severity", etc.

The Web Service shall accept of FilterObj.keyName in the form of
"TrapData.snmpVars[snmpVariableName].value" to filter on the values of SNMP Variables in a
trap. For example, to filter on SNMP Variable 'rndErrorDesc':, it will accept
"TrapData.snmpVars[rndErrorDesc].value".

When sorting TrapData, OmniVista shall accept a SortObj.keyName which specifies a top-level
leaf field of TrapData, such as "TrapData.synopsis", "TrapData.severity", etc. This means that
OmniVista will not sort TrapData on "TrapData.snmpVars.name" nor
"TrapData.snmpVars.value".

Data: TrapResultSet
class TrapResultSet extends ResultSet
{
 long numResults;
 FilterObj [] filters;
 SortObj [] sorters;
}

The functions that expect a TrapResultSet.uniqueId shall return a Fault if passed the uniqueId of
another kind of ResultSet.

The numResults field contains the number of rows of data that were returned by the query.

The filters and sorters fields identify the filters and sorters that were used to create the ResultSet.

	Getting Started with the Web Client
	Requirements
	Logging Into OmniVista Web Client
	Locator
	End Station Search Tab
	Searching for a Specific End Station

	End Station Browse Tab
	Table Display
	Column Definitions
	Sorting Information
	Filtering Information
	Exporting Information

	Notifications
	Table Display
	Column Definitions
	Sorting Information
	Filtering Information
	Exporting Information

	Topology
	Table Display
	Column Definitions
	Sorting Information
	Filtering Information
	Exporting Information
	Web-Based Management

	Web Services API
	Software Interfaces
	Common Behaviors
	Web Service
	ResultSets

